
1. Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE

WRITTEN IN JAVA.

Notes:

• Assume that the classes listed in the Quick Reference found in the Appendix have been imported where

appropriate.

• Unless otherwise noted in the question, assume that parameters in method calls are not null and that

methods are called only when their preconditions are satisfied.

• In writing solutions for each question, you may use any of the accessible methods that are listed in

classes defined in that question. Writing significant amounts of code that can be replaced by a call to one

of these methods may not receive full credit.

An APLine is a line defined by the equation ax + by + c = 0 , where a is not equal to zero, b is not equal to zero,

and a, b, and c are all integers. The slope of an APLine is defined to be the double value -a b/ . A point

(represented by integers x and y) is on an APLine if the equation of the APLine is satisfied when those x and y

values are substituted into the equation. That is, a point represented by x and y is on the line if ax + by + c is equal

to 0. Examples of two APLine equations are shown in the following table.

Assume that the following code segment appears in a class other than APLine. The code segment shows an

example of using the APLine class to represent the two equations shown in the table.

Write the APLine class. Your implementation must include a constructor that has three integer parameters that

represent a, b, and c, in that order. You may assume that the values of the parameters representing a and b are not

zero. It must also include a method getSlope that calculates and returns the slope of the line, and a method

isOnLine that returns true if the point represented by its two parameters (x and y, in that order) is on the APLine

and returns false otherwise. Your class must produce the indicated results when invoked by the code segment

given above. You may ignore any issues related to integer overflow.

AP COMPUTER SCIENCE A Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 1 of 37

2. SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE WRITTEN IN JAVA.

Assume that the classes listed in the Java Quick Reference have been imported where appropriate.
Unless otherwise noted in the question, assume that parameters in method calls are not null and that methods

are called only when their preconditions are satisfied.
In writing solutions for each question, you may use any of the accessible methods that are listed in classes defined

in that question. Writing significant amounts of code that can be replaced by a call to one of these methods will

not receive full credit.

The APCalendar class contains methods used to calculate information about a calendar. You will write two

methods of the class.

public class APCalendar

{

/** Returns true if year is a leap year and false otherwise */

private static boolean isLeapYear(int year)

{ /* implementation not shown */ }

/** Returns the number of leap years between year1 and year2,
inclusive.

* Precondition:Precondition: 0 <= year1 <= year2

*/

public static int numberOfLeapYears(int year1, int year2)

{ /* to be implemented in part (a) */ }

/** Returns the value representing the day of the week for the
first day of year,

* where 0 denotes Sunday, 1 denotes Monday, ..., and 6 denotes

Saturday.

*/

private static int firstDayOfYear(int year)

{ /* implementation not shown */ }

/** Returns n, where month, day, and year specify the nth day of
the year.

* Returns 1 for January 1 (month = 1, day = 1) of any year.

* Precondition:Precondition: The date represented by month, day, year is a valid

date.

*/

private static int dayOfYear(int month, int day, int year)

{ /* implementation not shown */ }

/** Returns the value representing the day of the week for the
given date

* (month, day, year), where 0 denotes Sunday, 1 denotes Monday,

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 2 of 37 AP Computer Science A

...,

* and 6 denotes Saturday.

* Precondition:Precondition: The date represented by month, day, year is a valid

date.

*/

public static int dayOfWeek(int month, int day, int year)

{ /* to be implemented in part (b) */ }

// There may be instance variables, constructors, and other
methods not shown.

}

Write the static method numberOfLeapYears, which returns the number of leap years between year1 and

year2, inclusive.

In order to calculate this value, a helper method is provided for you.

isLeapYear(year) returns true if year is a leap year and false otherwise.

Complete method numberOfLeapYears below. You must use isLeapYear appropriately to receive full credit.

/** Returns the number of leap years between year1 and year2,
inclusive.

* Precondition: 0 <= year1 <= year2

*/

public static int numberOfLeapYears(int year1, int year2)

(b) Write the static method dayOfWeek, which returns the integer value representing the day of the week for the

given date (month, day, year), where 0 denotes Sunday, 1 denotes Monday, ..., and 6 denotes Saturday.

For example, 2019 began on a Tuesday, and January 5 is the fifth day of 2019. As a result, January 5, 2019, fell on a

Saturday, and the method call dayOfWeek(1, 5, 2019) returns 6.

As another example, January 10 is the tenth day of 2019. As a result, January 10, 2019, fell on a Thursday, and the

method call dayOfWeek(1, 10, 2019) returns 4.

In order to calculate this value, two helper methods are provided for you.

• firstDayOfYear(year) returns the integer value representing the day of the week for the first day

of year, where 0 denotes Sunday, 1 denotes Monday, ..., and 6 denotes Saturday. For example,

since 2019 began on a Tuesday, firstDayOfYear(2019) returns 2.
• dayOfYear(month, day, year) returns , where month, day, and year specify the

day of the year. For the first day of the year, January 1 (month = 1, day = 1), the value 1 is

returned. This method accounts for whether year is a leap year. For example,

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 3 of 37

dayOfYear(3, 1, 2017) returns 60, since 2017 is not a leap year, while

dayOfYear(3, 1, 2016) returns 61, since 2016 is a leap year.

Class information for this question
public class APCalendar

private static boolean isLeapYear(int year)

public static int numberOfLeapYears(int year1, int year2)

private static int firstDayOfYear(int year)

private static int dayOfYear(int month, int day, int year)

public static int dayOfWeek(int month, int day, int year)

Complete method dayOfWeek below. You must use firstDayOfYear and dayOfYear appropriately to

receive full credit.

/** Returns the value representing the day of the week for the given
date

* (month, day, year), where 0 denotes Sunday, 1 denotes Monday,
...,

* and 6 denotes Saturday.

* Precondition: The date represented by month, day, year is a
valid date.

*/

public static int dayOfWeek(int month, int day, int year)

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 4 of 37 AP Computer Science A

SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE WRITTEN IN JAVA.

Assume that the classes listed in the Java Quick Reference have been imported where appropriate.
Unless otherwise noted in the question, assume that parameters in method calls are not null and that methods are

called only when their preconditions are satisfied.
In writing solutions for each question, you may use any of the accessible methods that are listed in classes defined in that

question. Writing significant amounts of code that can be replaced by a call to one of these methods will not receive full

credit.

This question involves the use of check digits, which can be used to help detect if an error has occurred when a number is

entered or transmitted electronically. An algorithm for computing a check digit, based on the digits of a number, is provided in

part (a).

The CheckDigit class is shown below. You will write two methods of the CheckDigit class.

public class CheckDigit

{

/** Returns the check digit for num, as described in part (a).

* Precondition: The number of digits in num is between one and six,
inclusive.

* num >= 0

*/

public static int getCheck(int num)

{

/* to be implemented in part (a) */

}

/** Returns true if numWithCheckDigit is valid, or false otherwise, as
described in part (b).

* Precondition: The number of digits in numWithCheckDigit is between two
and seven, inclusive.

* numWithCheckDigit >= 0

*/

public static boolean isValid(int numWithCheckDigit)

{

/* to be implemented in part (b) */

}

/** Returns the number of digits in num. */

public static int getNumberOfDigits(int num)

{

/* implementation not shown */

}

/** Returns the nth digit of num.

* Precondition: n >= 1 and n <= the number of digits in num

*/

public static int getDigit(int num, int n)

{

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 5 of 37

/* implementation not shown */

}

// There may be instance variables, constructors, and methods not shown.

}

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 6 of 37 AP Computer Science A

3. (a) Write the getCheck method, which computes the check digit for a number according to the following rules.

Multiply the first digit by 7, the second digit (if one exists) by 6, the third digit (if one exists) by 5, and so on. The

length of the method's int parameter is at most six; therefore, the last digit of a six-digit number will be

multiplied by 2.
Add the products calculated in the previous step.
Extract the check digit, which is the rightmost digit of the sum calculated in the previous step.

The following are examples of the check-digit calculation.

Example 1, where num has the value 283415

The sum to calculate is

.
The check digit is the rightmost digit of 106, or 6, and getCheck returns the integer value 6.

Example 2, where num has the value 2183

The sum to calculate is .
The check digit is the rightmost digit of 72, or 2, and getCheck returns the integer value 2.

Two helper methods, getNumberOfDigits and getDigit, have been provided.

getNumberOfDigits returns the number of digits in its int parameter.
getDigit returns the nth digit of its int parameter.

The following are examples of the use of getNumberOfDigits and getDigit.

Method Call Return Value Explanation

getNumberOfDigits(283415) 6 The number 283415 has 6 digits.

getDigit(283415, 1) 2 The first digit of 283415 is 2.

getDigit(283415, 5) 1 The fifth digit of 283415 is 1.

Complete the getCheck method below. You must use getNumberOfDigits and getDigit appropriately

to receive full credit.

/** Returns the check digit for num, as described in part (a).

* Precondition:Precondition: The number of digits in num is between one and six,

inclusive.

* num >= 0

*/

public static int getCheck(int num)

(b) Write the isValid method. The method returns true if its parameter numWithCheckDigit, which

represents a number containing a check digit, is valid, and false otherwise. The check digit is always the rightmost

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 7 of 37

digit of numWithCheckDigit.

The following table shows some examples of the use of isValid.

Method Call
Return

Value
Explanation

getCheck(159) 2 The check digit for 159 is 2.

isValid(1592) true
The number 1592 is a valid combination of a

number (159) and its check digit (2).

isValid(1593) false

The number 1593 is not a valid combination of a

number (159) and its check digit (3) because 2 is the check

digit for 159.

Complete method isValid below. Assume that getCheck works as specified, regardless of what you wrote in

part (a). You must use getCheck appropriately to receive full credit.

/** Returns true if numWithCheckDigit is valid, or false otherwise, as

described in part (b).

* Precondition:Precondition: The number of digits in numWithCheckDigit is between two

and seven, inclusive.

* numWithCheckDigit >= 0

*/

public static boolean isValid(int numWithCheckDigit)

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 8 of 37 AP Computer Science A

4. Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE

WRITTEN IN JAVA.

Notes:

• Unless otherwise noted in the question, assume that parameters in method calls are not null and that

methods are called only when their preconditions are satisfied.

• In writing solutions, you may use any of the accessible methods that are listed in classes defined in

the question. Writing significant amounts of code that can be replaced by a call to one of these methods

may not receive full credit.

The menu at a lunch counter includes a variety of sandwiches, salads, and drinks. The menu also allows a

customer to create a "trio," which consists of three menu items: a sandwich, a salad, and a drink. The price of the

trio is the sum of the two highest-priced menu items in the trio; one item with the lowest price is free.

Each menu item has a name and a price. The four types of menu items are represented by the four classes

Sandwich, Salad, Drink, and Trio. All four classes implement the following MenuItem interface.

The following diagram shows the relationship between the MenuItem interface and the Sandwich, Salad, Drink,

and Trio classes.

For example, assume that the menu includes the following items. The objects listed under each heading are

instances of the class indicated by the heading.

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 9 of 37

The menu allows customers to create Trio menu items, each of which includes a sandwich, a salad, and a drink.

The name of the Trio consists of the names of the sandwich, salad, and drink, in that order, each separated by "/"

and followed by a space and then "Trio". The price of the Trio is the sum of the two highest-priced items in the

Trio; one item with the lowest price is free.

A trio consisting of a cheeseburger, spinach salad, and an orange soda would have the name "Cheeseburger/

Spinach Salad/Orange Soda Trio" and a price of $4.00 (the two highest prices are $2.75 and $1.25). Similarly, a

trio consisting of a club sandwich, coleslaw, and a cappuccino would have the name "Club Sandwich/Coleslaw/

Cappuccino Trio" and a price of $6.25 (the two highest prices are $2.75 and $3.50).

Write the Trio class that implements the MenuItem interface. Your implementation must include a constructor that

takes three parameters representing a sandwich, salad, and drink. The following code segment should have the

indicated behavior.

Write the complete Trio class below.

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 10 of 37 AP Computer Science A

5. Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE

WRITTEN IN JAVA.

Notes:

• Assume that the classes listed in the Java Quick Reference have been imported where appropriate.

• Unless otherwise noted in the question, assume that parameters in method calls are not null and that

methods are called only when their preconditions are satisfied.

• In writing solutions for each question, you may use any of the accessible methods that are listed in

classes defined in that question. Writing significant amounts of code that can be replaced by a call to one

of these methods will not receive full credit.

Consider a guessing game in which a player tries to guess a hidden word. The hidden word contains only capital

letters and has a length known to the player. A guess contains only capital letters and has the same length as the

hidden word.

After a guess is made, the player is given a hint that is based on a comparison between the hidden word and the

guess. Each position in the hint contains a character that corresponds to the letter in the same position in the guess.

The following rules determine the characters that appear in the hint.

The HiddenWord class will be used to represent the hidden word in the game. The hidden word is passed to the

constructor. The class contains a method, getHint, that takes a guess and produces a hint.

For example, suppose the variable puzzle is declared as follows.

HiddenWord puzzle = new HiddenWord("HARPS");

The following table shows several guesses and the hints that would be produced.

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 11 of 37

Write the complete HiddenWord class, including any necessary instance variables, its constructor, and the method,

getHint, described above. You may assume that the length of the guess is the same as the length of the hidden

word.

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 12 of 37 AP Computer Science A

6. This question involves reasoning about a simulation of a frog hopping in a straight line. The frog attempts to hop to a goal

within a specified number of hops. The simulation is encapsulated in the following FrogSimulation class. You will write

two of the methods in this class.

a. Write the simulate method, which simulates the frog attempting to hop in a straight line to a goal from the frog's

starting position of 0 within a maximum number of hops. The method returns true if the frog successfully reached

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 13 of 37

the goal within the maximum number of hops; otherwise, the method returns false.

The FrogSimulation class provides a method called hopDistance that returns an integer representing the distance

(positive or negative) to be moved when the frog hops. A positive distance represents a move toward the goal. A

negative distance represents a move away from the goal. The returned distance may vary from call to call. Each

time the frog hops, its position is adjusted by the value returned by a call to the hopDistance method.

The frog hops until one of the following conditions becomes true:

• The frog has reached or passed the goal.

• The frog has reached a negative position.

• The frog has taken the maximum number of hops without reaching the goal.

The following example shows a declaration of a FrogSimulation object for which the goal distance is 24 inches

and the maximum number of hops is 5. The table shows some possible outcomes of calling the simulate method.

FrogSimulation sim = new FrogSimulation(24, 5);

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 14 of 37 AP Computer Science A

Complete method simulate below. You must use hopDistance appropriately to receive full credit.

/** Simulates a frog attempting to reach the goal as described in part (a). * Returns true if the frog successfully

reached or passed the goal during the simulation; * false otherwise. */

public boolean simulate()

b. Write the runSimulations method, which performs a given number of simulations and returns the proportion of

simulations in which the frog successfully reached or passed the goal. For example, if the parameter passed to

runSimulations is 400, and 100 of the 400 simulate method calls returned true, then the runSimulations method

should return 0.25.

Complete method runSimulations below. Assume that simulate works as specified, regardless of what you wrote

in part (a). You must use simulate appropriately to receive full credit.

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 15 of 37

7. SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE WRITTEN IN JAVA.

• Assume that the classes listed in the Java Quick Reference have been imported where appropriate.
• Unless otherwise noted in the question, assume that parameters in method calls are not null and that

methods are called only when their preconditions are satisfied.
• In writing solutions for each question, you may use any of the accessible methods that are listed in

classes defined in that question. Writing significant amounts of code that can be replaced by a call to one

of these methods will not receive full credit.

This question involves the creation and use of a spinner to generate random numbers in a game. A
GameSpinner object represents a spinner with a given number of sectors, all equal in size. The

GameSpinner class supports the following behaviors.

• Creating a new spinner with a specified number of sectors
• Spinning a spinner and reporting the result
• Reporting the length of the current run, the number of consecutive spins that are the same as the most

recent spin

The following table contains a sample code execution sequence and the corresponding results.

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 16 of 37 AP Computer Science A

Statements

Value

Returned

(blank if

no value

returned)

Comment

GameSpinner g =

new

GameSpinner(4);

Creates a new spinner with four sectors

g.currentRun(); 0
Returns the length of the current run. The length of the

current run is initially 0 because no spins have occurred.

g.spin(); 3
Returns a random integer between 1 and 4, inclusive.

In this case, 3 is returned.

g.currentRun(); 1
The length of the current run is 1 because there has been

one spin of 3 so far.

g.spin(); 3
Returns a random integer between 1 and 4, inclusive.

In this case, 3 is returned.

g.currentRun(); 2
The length of the current run is 2 because there have

been two 3s in a row.

g.spin(); 4
Returns a random integer between 1 and 4, inclusive.

In this case, 4 is returned.

g.currentRun(); 1

The length of the current run is 1 because the spin of 4

is different from the value of the spin in the previous run

of two 3s.

g.spin(); 3
Returns a random integer between 1 and 4, inclusive.

In this case, 3 is returned.

g.currentRun(); 1

The length of the current run is 1 because the spin of 3

is different from the value of the spin in the previous run

of one 4.

g.spin(); 1
Returns a random integer between 1 and 4, inclusive.

In this case, 1 is returned.

g.spin(); 1
Returns a random integer between 1 and 4, inclusive.

In this case, 1 is returned.

g.spin(); 1
Returns a random integer between 1 and 4, inclusive.

In this case, 1 is returned.

g.currentRun(); 3

The length of the current run is 3 because there have

been three consecutive 1s since the previous run of one

3.

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 17 of 37

Write the complete GameSpinner class. Your implementation must meet all specifications and conform to the

example.

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 18 of 37 AP Computer Science A

8. In this question, you will complete methods in classes that can be used to represent a multi-player game. You will

be able to implement these methods without knowing the specific game or the players' strategies.

The GameState interface describes the current state of the game. Different implementations of the interface can be

used to play different games. For example, the state of a checkers game would include the positions of all the

pieces on the board and which player should make the next move.

The GameState interface specifies these methods. The Player class will be described in part (a).

The makeMove method makes the move specified, updating the state of the game being played. Its parameter is a

String that describes the move. The format of the string depends on the game. In tic-tac-toe, for example, the move

might be something like "X-1-1", indicating an X is put in the position (1, 1).

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 19 of 37

a. The Player class provides a method for selecting the next move. By extending this class, different playing

strategies can be modeled.

The method getNextMove returns the next move to be made as a string, using the same format as that

used by makeMove in GameState. Depending on how the getNextMove method is implemented, a player

can exhibit different game-playing strategies.

Write the complete class declaration for a RandomPlayer class that is a subclass of Player. The class

should have a constructor whose String parameter is the player's name. It should override the

getNextMove method to randomly select one of the valid moves in the given game state. If there are no

valid moves available for the player, the string "no move" should be returned.

b. The GameDriver class is used to manage the state of the game during game play. The GameDriver class

can be written without knowing details about the game being played

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 20 of 37 AP Computer Science A

Write the GameDriver method play. This method should first print the initial state of the game. It should

then repeatedly determine the current player and that player's next move, print both the player's name and

the chosen move, and make the move. When the game is over, it should stop making moves and print

either the name of the winner and the word "wins" or the message "Game ends in a draw" if there is no

winner. You may assume that the GameState makeMove method has been implemented so that it will

properly handle any move description returned by the Player getNextMove method, including the string

"no move".

Complete method play below

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 21 of 37

9. SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE WRITTEN IN JAVA.

• Assume that the classes listed in the Java Quick Reference have been imported where appropriate.
• Unless otherwise noted in the question, assume that parameters in method calls are not null and

that methods are called only when their preconditions are satisfied.
• In writing solutions for each question, you may use any of the accessible methods that are listed in

classes defined in that question. Writing significant amounts of code that can be replaced by a call to

one of these methods will not receive full credit.

A mathematical sequence is an ordered list of numbers. This question involves a sequence called a hailstone sequence.

If is the value of a term in the sequence, then the following rules are used to find the next term, if one exists.

• If is 1, the sequence terminates.
• If is even, then the next term is .

• If is odd, then the next term is .

For this question, assume that when the rules are applied, the sequence will eventually terminate with the term .

The following are examples of hailstone sequences.

Example 1: 5, 16, 8, 4, 2, 1

• The first term is 5, so the second term is .
• The second term is 16, so the third term is .

• The third term is 8, so the fourth term is .

• The fourth term is 4, so the fifth term is .

• The fifth term is 2, so the sixth term is .

• Since the sixth term is 1, the sequence terminates.

Example 2: 8, 4, 2, 1

• The first term is 8, so the second term is .

• The second term is 4, so the third term is .

• The third term is 2, so the fourth term is .

• Since the fourth term is 1, the sequence terminates.

The Hailstone class, shown below, is used to represent a hailstone sequence. You will write three methods in the

Hailstone class.

public class Hailstone

{

/** Returns the length of a hailstone sequence that starts with n,

* as described in part (a).

* Precondition: n > 0

*/

public static int hailstoneLength(int n)

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 22 of 37 AP Computer Science A

{ /* to be implemented in part (a) */ }

/** Returns true if the hailstone sequence that starts with n is

considered long

* and false otherwise, as described in part (b).

* Precondition: n > 0

*/

public static boolean isLongSeq(int n)

{ /* to be implemented in part (b) */ }

/** Returns the proportion of the first n hailstone sequences that are

considered long,

* as described in part (c).

* Precondition: n > 0

*/

public static double propLong(int n)

{ /* to be implemented in part (c) */ }

// There may be instance variables, constructors, and methods not

shown.

}

(a) The length of a hailstone sequence is the number of terms it contains. For example, the hailstone sequence in

example 1 (5, 16, 8, 4, 2, 1) has a length of 6 and the hailstone sequence in example 2 (8, 4, 2, 1) has a length of 4.

Write the method hailstoneLength(int n), which returns the length of the hailstone sequence that starts with

n.

/** Returns the length of a hailstone sequence that starts with n,

* as described in part (a).

* Precondition:Precondition: n > 0

*/

public static int hailstoneLength(int n)

Class information for this question

public class Hailstone

public static int hailstoneLength(int n)

public static boolean isLongSeq(int n)

public static double propLong(int n)

(b) A hailstone sequence is considered long if its length is greater than its starting value. For example, the hailstone

sequence in example 1 (5, 16, 8, 4, 2, 1) is considered long because its length (6) is greater than its starting value (5).

The hailstone sequence in example 2 (8, 4, 2, 1) is not considered long because its length (4) is less than or equal to its

starting value (8).

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 23 of 37

Write the method isLongSeq(int n), which returns true if the hailstone sequence starting with n is

considered long and returns false otherwise. Assume that hailstoneLength works as intended, regardless of

what you wrote in part (a). You must use hailstoneLength appropriately to receive full credit.

/** Returns true if the hailstone sequence that starts with n is

considered long

* and false otherwise, as described in part (b).

* Precondition:Precondition: n > 0

*/

public static boolean isLongSeq(int n)

(c) The method propLong(int n) returns the proportion of long hailstone sequences with starting values between

1 and n, inclusive.

Consider the following table, which provides data about the hailstone sequences with starting values between 1 and 10,

inclusive.

Starting

Value
Terms in the Sequence

Length of

the

Sequence

Long?

1 1 1 No

2 2, 1 2 No

3 3, 10, 5, 16, 8, 4, 2, 1 8 Yes

4 4, 2, 1 3 No

5 5, 16, 8, 4, 2, 1 6 Yes

6 6, 3, 10, 5, 16, 8, 4, 2, 1 9 Yes

7 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 17 Yes

8 8, 4, 2, 1 4 No

9
9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4,

2, 1
20 Yes

10 10, 5, 16, 8, 4, 2, 1 7 No

The method call Hailstone.propLong(10) returns 0.5, since 5 of the 10 hailstone sequences shown in the

table are considered long.

Write the propLong method. Assume that hailstoneLength and isLongSeq work as intended, regardless

of what you wrote in parts (a) and (b). You must use isLongSeq appropriately to receive full credit.

/** Returns the proportion of the first n hailstone sequences that are

considered long,

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 24 of 37 AP Computer Science A

* as described in part (c).

* Precondition:Precondition: n > 0

*/

public static double propLong(int n)

Class information for this question

public class Hailstone

public static int hailstoneLength(int n)

public static boolean isLongSeq(int n)

public static double propLong(int n)

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 25 of 37

10. SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE WRITTEN IN
JAVA.

• Assume that the classes listed in the Java Quick Reference have been imported where appropriate.
• Unless otherwise noted in the question, assume that parameters in method calls are not null and that

methods are called only when their preconditions are satisfied.
• In writing solutions for each question, you may use any of the accessible methods that are listed in

classes defined in that question. Writing significant amounts of code that can be replaced by a call to one

of these methods will not receive full credit.

A manufacturer wants to keep track of the average of the ratings that have been submitted for an item using a
running average. The algorithm for calculating a running average differs from the standard algorithm for
calculating an average, as described in part (a).

A partial declaration of the RunningAverage class is shown below. You will write two methods of the

RunningAverage class.

public class RunningAverage

{

/** The number of ratings included in the running average. */

private int count;

/** The average of the ratings that have been entered. */

private double average;

// There are no other instance variables.

/** Creates a RunningAverage object.

* Postcondition: count is initialized to 0 and average is

* initialized to 0.0.

*/

public RunningAverage()

{ /* implementation not shown */ }

/** Updates the running average to reflect the entry of a new

* rating, as described in part (a).

*/

public void updateAverage(double newVal)

{ /* to be implemented in part (a) */ }

/** Processes num new ratings by considering them for inclusion

* in the running average and updating the running average as

* necessary. Returns an integer that represents the number of

* invalid ratings, as described in part (b).

* Precondition: num > 0

*/

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 26 of 37 AP Computer Science A

public int processNewRatings(int num)

{ /* to be implemented in part (b) */ }

/** Returns a single numeric rating. */

public double getNewRating()

{ /* implementation not shown */ }

}

(a) Write the method updateAverage, which updates the RunningAverage object to include a new

rating. To update a running average, add the new rating to a calculated total, which is the number of ratings times
the current running average. Divide the new total by the incremented count to obtain the new running average.

For example, if there are ratings with a current running average of , the calculated total is times , or
. When a fifth rating with a value of is included, the new total becomes . The new running average is
divided by , or .

Complete method updateAverage.

/** Updates the running average to reflect the entry of a new

* rating, as described in part (a).

*/

public void updateAverage(double newVal)

(b) Write the processNewRatings method, which considers num new ratings for inclusion in the running

average. A helper method, getNewRating, which returns a single rating, has been provided for you.

The running average must only be updated with ratings that are greater than or equal to zero. Ratings that are less
than 0 are considered invalid and are not included in the running average.

The processNewRatings method returns the number of invalid ratings. See the table below for three

examples of how calls to processNewRatings should work.

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 27 of 37

Statement

Ratings

Generated

processNewRatings

Return Value

Comments

processNewRatings(2) 2.5, 4.5 0

Both new ratings are

included in the

running average.

processNewRatings(1) -2.0 1

No new ratings are

included in the

running average.

processNewRatings(4)

0.0,

-2.2,

3.5,

-1.5

2

Two new ratings (0.0

and 3.5) are

included in the

running average.

Complete method processNewRatings. Assume that updateAverage works as specified, regardless of

what you wrote in part (a). You must use getNewRating and updateAverage appropriately to receive

full credit.

/** Processes num new ratings by considering them for inclusion

* in the running average and updating the running average as

* necessary. Returns an integer that represents the number of

* invalid ratings, as described in part (b).

* Precondition: num > 0

*/

public int processNewRatings(int num)

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 28 of 37 AP Computer Science A

11. The StringChecker interface describes classes that check if strings are valid, according to some criterion.

A CodeWordChecker is a StringChecker. A CodeWordChecker object can be constructed with three parameters:

two integers and a string. The first two parameters specify the minimum and maximum code word lengths,

respectively, and the third parameter specifies a string that must not occur in the code word. A CodeWordChecker

object can also be constructed with a single parameter that specifies a string that must not occur in the code word;

in this case the minimum and maximum lengths will default to 6 and 20, respectively.

The following examples illustrate the behavior of CodeWordChecker objects.

Example 1

Valid code words have 5 to 8 characters and must not include the string "$".

Example 2

Valid code words must not include the string "pass". Because the bounds are not specified, the length bounds are 6

and 20, inclusive.

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 29 of 37

Write the complete CodeWordChecker class. Your implementation must meet all specifications and conform to all

examples.

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 30 of 37 AP Computer Science A

12. SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE WRITTEN IN JAVA.

• Assume that the classes listed in the Java Quick Reference have been imported where appropriate.
• Unless otherwise noted in the question, assume that parameters in method calls are not null and that

methods are called only when their preconditions are satisfied.
• In writing solutions for each question, you may use any of the accessible methods that are listed in

classes defined in that question. Writing significant amounts of code that can be replaced by a call to one

of these methods will not receive full credit.

The class SingleTable represents a table at a restaurant.

public class SingleTable

{

/** Returns the number of seats at this table. The value

* is always greater than or equal to 4.

*/

public int getNumSeats()

{ /* implementation not shown */ }

/** Returns the height of this table in centimeters. */

public int getHeight()

{ /* implementation not shown */ }

/** Returns the quality of the view from this table. */

public double getViewQuality()

{ /* implementation not shown */ }

/** Sets the quality of the view from this table to value.

*/

public void setViewQuality(double value)

{ /* implementation not shown */ }

// There may be instance variables, constructors, and methods

// that are not shown.

}

At the restaurant, customers can sit at tables that are composed of two single tables pushed together. You will
write a class CombinedTable to represent the result of combining two SingleTable objects, based on

the following rules and the examples in the chart that follows.

A CombinedTable can seat a number of customers that is two fewer than the total number of seats in its two

SingleTable objects (to account for seats lost when the tables are pushed together).
A CombinedTable has a desirability that depends on the views and heights of the two single tables. If the two

single tables of a CombinedTable object are the same height, the desirability of the CombinedTable

object is the average of the view qualities of the two single tables.
If the two single tables of a CombinedTable object are not the same height, the desirability of the

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 31 of 37

CombinedTable object is units less than the average of the view qualities of the two single tables.

Assume SingleTable objects t1, t2, and t3 have been created as follows.

SingleTable t1 has seats, a view quality of , and a height of centimeters.
SingleTable t2 has seats, a view quality of , and a height of centimeters.
SingleTable t3 has seats, a view quality of , and a height of centimeters.

The chart contains a sample code execution sequence and the corresponding results.

Statement

Value

Returned

(blank if

no value)

Class Specification

CombinedTable c1 = new

CombinedTable(t1,

t2);

A CombinedTable is composed of two

SingleTable objects.

c1.canSeat(9); true
Since its two single tables have a total of seats,

c1 can seat or fewer people.

c1.canSeat(11); false c1 cannot seat people.

c1.getDesirability(); 65.0

Because c1's two single tables are the same

height, its desirability is the average of 60.0 and

70.0.

CombinedTable c2 = new

CombinedTable(t2,

t3);

A CombinedTable is composed of two

SingleTable objects.

c2.canSeat(18); true
Since its two single tables have a total of seats,

c2 can seat or fewer people.

c2.getDesirability(); 62.5

Because c2's two single tables are not the same

height, its desirability is units less than the

average of 70.0 and 75.0.

t2.setViewQuality(80);

Changing the view quality of one of the tables that

makes up c2 changes the desirability of c2, as

illustrated in the next line of the chart. Since

setViewQuality is a SingleTable method,

you do not need to write it.

c2.getDesirability(); 67.5
Because the view quality of t2 changed, the

desirability of c2 has also changed.

The last line of the chart illustrates that when the characteristics of a SingleTable change, so do those of the

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 32 of 37 AP Computer Science A

CombinedTable that contains it.

Write the complete CombinedTable class. Your implementation must meet all specifications and conform to

the examples shown in the preceding chart.

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 33 of 37

13. SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE WRITTEN IN JAVA.

• Assume that the classes listed in the Java Quick Reference have been imported where appropriate.
• Unless otherwise noted in the question, assume that parameters in method calls are not null and that

methods are called only when their preconditions are satisfied.
• In writing solutions for each question, you may use any of the accessible methods that are listed in

classes defined in that question. Writing significant amounts of code that can be replaced by a call to one

of these methods will not receive full credit.

This question involves the WordMatch class, which stores a secret string and provides methods that compare

other strings to the secret string. You will write two methods in the WordMatch class.

public class WordMatch

{

/** The secret string. */

private String secret;

/** Constructs a WordMatch object with the given secret string

* of lowercase letters.

*/

public WordMatch(String word)

{

/* implementation not shown */

}

/** Returns a score for guess, as described in part (a).

* Precondition: 0 < guess.length() <= secret.length()

*/

public int scoreGuess(String guess)

{ /* to be implemented in part (a) */ }

/** Returns the better of two guesses, as determined by scoreGuess

* and the rules for a tie-breaker that are described in part (b).

* Precondition: guess1 and guess2 contain all lowercase letters.

* guess1 is not the same as guess2.

*/

public String findBetterGuess(String guess1, String guess2)

{ /* to be implemented in part (b) */ }

}

(a) Write the WordMatch method scoreGuess. To determine the score to be returned,

scoreGuess finds the number of times that guess occurs as a substring of secret and then multiplies

that number by the square of the length of guess. Occurrences of guess may overlap within secret.

Assume that the length of guess is less than or equal to the length of secret and that guess is not an

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 34 of 37 AP Computer Science A

empty string.

The following examples show declarations of a WordMatch object. The tables show the outcomes of some

possible calls to the scoreGuess method.

WordMatch game = new WordMatch("mississippi");

Value of guessguess

Number of

Substring

Occurrences

Score Calculation:

(Number of

Substring

Occurrences) x

(Square of the

Length of guessguess)

Return Value of

game.scoreGuess(guess)game.scoreGuess(guess)

"i" 4 * 1 * 1 = 4 4

"iss" 2 * 3 * 3 = 18 18

"issipp" 1 * 6 * 6 = 36 36

"mississippi"
1 * 11 * 11 =

121
121

WordMatch game = new WordMatch("aaaabb");

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 35 of 37

Value of

guessguess

Number of

Substring

Occurrences

Score Calculation:

(Number of

Substring Occurrences)

x

(Square of the

Length of guessguess)

Return Value of

game.scoreGuess(guess)game.scoreGuess(guess)

"a" 4 * 1 * 1 = 4 4

"aa" 3 * 2 * 2 = 12 12

"aaa" 2 * 3 * 3 = 18 18

"aabb" 1 * 4 * 4 = 16 16

"c" 0 * 1 * 1 = 0 0

Complete the scoreGuess method.

/** Returns a score for guess, as described in part (a).

* Precondition: 0 < guess.length() <= secret.length()

*/

public int scoreGuess(String guess)

(b) Write the WordMatch method findBetterGuess, which returns the better guess of its two String

parameters, guess1 and guess2. If the scoreGuess method returns different values for guess1 and

guess2, then the guess with the higher score is returned. If the scoreGuess method returns the same value

for guess1 and guess2, then the alphabetically greater guess is returned.

The following example shows a declaration of a WordMatch object and the outcomes of some possible calls to

the scoreGuess and findBetterGuess methods.

WordMatch game = new WordMatch("concatenation");

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

Page 36 of 37 AP Computer Science A

Method Call

Return

Value

Explanation

game.scoreGuess("ten");
9 1 * 3 * 3

game.scoreGuess("nation");
36 1 * 6 * 6

game.findBetterGuess("ten",

"nation");
"nation"

Since scoreGuess returns 36 for

"nation" and 9 for "ten", the

guess with the greater score, "nation",

is returned.

game.scoreGuess("con");
9 1 * 3 * 3

game.scoreGuess("cat");
9 1 * 3 * 3

game.findBetterGuess("con",

"cat");
"con"

Since scoreGuess returns 9 for both

"con" and "cat", the alphabetically

greater guess, "con", is returned.

Complete method findBetterGuess.

Assume that scoreGuess works as specified, regardless of what you wrote in part (a). You must use

scoreGuess appropriately to receive full credit.

/** Returns the better of two guesses, as determined by scoreGuess

* and the rules for a tie-breaker that are described in part (b).

* Precondition: guess1 and guess2 contain all lowercase letters.

* guess1 is not the same as guess2.

*/

public String findBetterGuess(String guess1, String guess2)

Test Booklet

FRQ / Unit 1 and 2 FRQ: 1 Methods and Control Structures 2 Class

AP Computer Science A Page 37 of 37

